Summary

Bacillus thuringiensis has undeniably been the most effective microbial agent for biological insect control of all time. The present study aimed to control resistant insects by isolating soil samples from different areas of Pakistan intended for effective mosquitocidal cry 11 positive Bacillus thuringiensis (Bt.). Fifty samples were collected from different areas of Pakistan's ecosystem. It was noticed that 36%, 22%, 20%, 12%, and 10%, Bt. isolates were quarantined from dry soil, moist soil, soil containing cattle waste, garden soil, and sandy soil samples, respectively. The major source of cry 11 positive Bt. isolates were dry soil and dung-containing soil. Genomic DNA was isolated, and a DNA fragment of 650 bp, full length 1.9 kb cry 11 gene was amplified by PCR, respectively. Fourteen Bt. were brought to be positive for the cry 11 gene. The 16S rDNA study exposed that these screened Bt, confirmed 99% homology with Bt. kurstuki RKD12, Bti. strain AM65-52, Btko.MC28, Bt. YB.T.-1518, Bt. NCIM coregensis, gallerie, strain, Fdaargos 796. Bt. serovar tolworthi, Bt. str. Al -Hakan and Bt. serovar Chinensis, Bt. serovar Indiana. The toxicity bioassays with Bt. spores, and protein diet proved that eleven Bt. isolates harboring cry 11 genes (viz., NF1Bt., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) were most toxic to 3rd instar larvae of mosquito, Aedes aegypti, Anopheles stephensii, and Culex pipens. The first six stains were selected on the basis of toxicity in descending order. Finally, 9NF, a highly toxic strain out of the three most toxic Bt. isolates, was selected for cloning and characterization of the full-length cry 11 gene. It was isolated from dry soil animal dung at Kashmir Neelam Valley having spore diet LC50 327.8 ±846 µg/ml against A. gegypti (3rd instar larvae) after 24 hours and showed 100% mortality at 0.7mg of spores/ml. The positive control HD-500

6NF is quite less than HD500 LC50 (683 µg/ml). So, 9NF the most toxic strain as compared to HD500. The LC50 of 9NF is 644.105±45 against Culex pipens, which shows less toxicity against spore diet as compared to the genera Aedes and Anopheles. Protein LC50 of 9, 4, 6NF is 69.130±5, 84.1±5, 95.1±407 ug/ml against A. aegypti harboring crv 11 gene. All isolates did not show the same level of toxicity, which reflects the variation in expression level. isolate was done which showed 99% homology with already reported B. thuringiensis in pTZ57R/T and pET30a (+) for expression. The optimized conditions for good expression of the cry 11 gene were found to be 1mM IPTG, 3.5-4 hours incubation

showed 94% mortality. It was found that LC50 (327.8, 442.7, 460.8 µg/ml) of 9, 4, and

The present study describe the screening and characterization of toxic Bt. (9NF) locally (AXJ97553.1). Cry 11 gene from the most toxic Bt. strain 9NF was cloned and subcloned time, and 37°C. Biotoxicity assays revealed that partially purified Bt, protein is highly toxic against A. gegypti larvae with LC50 value of 42.883±6 µg/ml. Further screening from different ecological habitats must be necessary to search for a novel cry 11 gene to form biopesticides and overcome insect resistance. This research may lead to applications in the field to control the insect expression level of the cry 11 gene present in local Bt. isolates.