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Abstract

Studies on the existence and properties of paths and cycles through a specified number
of vertices in a graph have been of considerable interest to both pure and applied
mathematicians as well as researchers in other disciplines. Applications of such studies
can be found in fields related to electrical engineering, computer algorithm analysis,
operations research and other areas of scientific research.

Since the four-colour theorem has been proven finally with the help of a com-
puter, the oldest and the most famous unsolved problem in the theory of graphs is
undoubtedly that of finding an eclegant and practical characterization of hamiltonian
graphs. Indeed, these two problems are not entirely unrelated. It is known that [40]
every hamiltonian plane map is 4-colourable. The problem of recognising a graph
to be hamiltonian is notoriously difficult. In fact, Karp [29] proved that it is an
N'P-complete problem. Combined with a theorem of S.A Cook [10], the existence
of a good characterization of nonhamiltonian graph secems unlikely, although several
necessary conditions and many sufficient conditions (see [3]) have been discovered.
The interested reader is referred in particular to the surveys of Berge ([2], Chapter
10), Bondy and Murty ([6], Chapters 4 and 9), J. C. Bermond [3], Flandrin, Faudree
and Ryjagek [20] and R. Gould [24]. ‘ ‘,

A Toeplitz matriz, is a square matrix (n x n) which has constant values along
all diagonals parallel to the main diagonal. Toeplitz matrices have uses in different
areas in pure and applied mathematics. For example, théy are closely connccted
with Fourier series, they often appear when differential or integral equations are
discretized, they arise in physical data-processing applications, in the theories of
orthogonal polynomials, stationary processes, and moment problems; sec Heinig and
Rost [26]. For other references on Toeplitz matrices see [25], [23] and [28].

A special case of a Toeplitz matrix is a circulant matrix, where each row is rotated
one element to the right relative to the preceding row. Circulant matrices and their
properties have been studied in [13] and [25]. In numerical analysis circulant matrices
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arc important becanse they are diagonalized by a discrete Fourier transform, and
lieniee linecar cquations that contain them may be quickly solved usiug a fast Fourier
transform. These matrices are alse very useful in digital image processing.

A graph whose adjacency matrix s circulant is called errculant. Cirenlant graphs
and their properties such as connectivity, haniltonicity, bipartiteness, planarity and
colonrability have been studied by several authors (see [5]. [7], [21], [22] and [41]).
In particular, the conjecture of Boesch and Tindell [5], that all undirected conneeted
circulant graphs are hamiltonian, was proved by Burkard and Sandholzer [7].

IMamiltonicity in many classes of graphs has been studied so far, One special class
of graphs whose hamiltouicity has been studied is that of Toeplitz graphs, introduced
by R. van Dal. G Tijssen, Z. Tuza, JAA van der Veen, Ch. Zamfirescu and T
Zamfireseu [12] in 1996, €. Heuberger [27] continued the study of hamiltonicity of
Toeplitz graphs in 2002, [amiltonian properties of dirceted Toepliiz graphs have been
investigated in [32], [34], and [33]. Morcover, hamiltonian connectedness of directed
Tocplits graphs was studied in [35].

A simple graph T of order nis called a Toeplitz graph if its adjacency matrix A(T)
1s Toeplitz. Some other properties of Toeplitz graphs: such as bipartiteness, planarity
and colonrahility, have been studied in [17], [18] and [19].

In this thesis, we invegtigate the hamiltonian connectedness of nndirected Toeplitz
graphs.

In Chapter 1 we describe some basic definitions, and results about graphs. We
also discuss adjacency matrices, Toeplitz matrices and Toeplitz graphs.

Chapter 2 deals with a brief history of the hamiltonian graphs. We then mention
some known results on the hamiltonicity of Toeplitz graphs.

In Chapter 3, we present results about the hamiltonian connectedness of Toeplitz
graphs, more precisely of T, (t1,t2), Tn(1,¢, s). ‘

In Chapter 4 we improve our results for the case of TnC,l, 3,s). and 7,,(1,4, s).
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