We present an overview of the existence theorems on generalized contractions in connection with ordered implicit relations in different metric spaces. Notations and some fundamental properties of metric space, cone metric space, cone rectangular metric space, cone b-metric space and rectangular cone b-metric space are discussed. Examples are provided to understand the need of such metric spaces in the literature. We present a literature survey on celebrated fixed-point results and generalized contraction mappings. We investigate a fixed point method to be used to show the existence of the solutions to Urysohn Integral Equation. We establish a fixed point theorem to be used to obtain an homotopy result as an application. Exposed theory has been explained through examples. By introducing subadditivity, we will establish some new fixed point theorems for F-contraction, F-Suzuki contraction, Ciric type generalized F-contraction and F- almost contractions defined on a complete metric space. We will also discuss the relationship between these contraction conditions. Our work generalizes and extends some well known fixed point results in the literature. Moreover, to address conceptual depth within this approach, we give illustrative examples where necessary. Proposed work for PhD thesis is presented. References related to proposed work are given. We present a brief research methodology for the solution of a particular problem. Our results generalize, extend and improve several well-known conventional results.