Abstract

Charged particle induced nuclear reactions for the production of 52Fe and 72As were studied. A critical analysis led to consider proton induced nuclear reaction sections on 72Ge, 73Ge, 74Ge and 76Se to investigate for the production of 72As while for the production of 52Fe, the proton induced reactions on 58Ni, 55Mn and alpha induced reaction on 50Cr were chosen. The experimental results obtained via 72Ge(p, n)72As, 73Ge(p, 2n)72As, 74Ge(p, 3n)72As, 76Se (p, x)72As and 58Ni (p, x)52Fe, 50Cr (4He, 2n) 52Fe and 55Mn(p,4n)52Fe reactions were compared with the results of nuclear model calculations using the codes ALICE-IPPE, EMPIRE 3.2 and TALYS 1.9 to check the reliability and discrepancy in the experimental data. Polynomial fittings were applied using Origin-Lab Pro 2017 to maintain the consistency of experimental and calculated data. Recommended data were generated using the well-established evaluation methodology. The thick target yields (TTY) of 52Fe and 72As is calculated from the recommended excitation functions. Analysis of radionuclidic impurities was also discussed for both radionuclides. Comparison of the various radionuclidic impurities is done. On the basis of TTY and radio-nuclidic impurity analysis; the production routes and optimum energy ranges for the production of 52Fe and 72As are proposed. Our evaluation scheme showed that for the production of 52Fe via 55Mn(p,4n)52Fe reaction, energy ranges from 70–45 MeV could be the method of choice, which gives high yield with minimum impurities to make it as a potential candidate for theranostic applications in nuclear medicine and in particular, Positron Emission Tomography (PET). For the 72As; 72Ge(p, n)72As reaction in the energy ranges 10–20 MeV is the optimized nuclear reaction with a negligible impurity ratio and maximum production yield. Being in the low energy range, a small cyclotron can be engaged for the production of 72As to be used it in the medical applications.