Abstract

An edge-covering of G is a family of subgraphs H_1, H_2, \ldots, H_t such that each edge of $E(G)$ belongs to at least one of the subgraphs H_i, $i = 1, 2, \ldots, t$. Then it is said that G admits an (H_1, H_2, \ldots, H_t)-edge covering. If every subgraph H_i is isomorphic to a given graph H, then the graph G admits an H-covering.

Let $G = (V, E, F)$ be a plane graph admitting H-covering. For the subgraph $H \subseteq G$ under an entire k-labeling $\varphi : V(G) \cup E(G) \cup F(G) \rightarrow \{1, 2, \ldots, k\}$, we define the associated H-weight as

$$w_\varphi(H) = \sum_{v \in V(H)} \varphi(v) + \sum_{e \in E(H)} \varphi(e) + \sum_{f \in F(H)} \varphi(f).$$

An entire k-labeling φ is called an H-irregular entire k-labeling of the plane graph G if for every two different subgraphs H' and H'' isomorphic to H there is $w_\varphi(H') \neq w_\varphi(H'')$. The entire H-irregularity strength of a plane graph G, denoted by $\text{Ehs}(G, H)$, is the smallest integer k such that G has an H-irregular entire k-labeling.

Similarly is defined a vertex-face H-irregularity strength denoted by $\text{vfhs}(G, H)$ and also an edge-face H-irregularity strength denoted by $\text{efhs}(G, H)$.

One of the interesting kind of labelings are cordial labelings. For a simple graph $G = (V, E)$ we deal with an edge labeling $\varphi : E(G) \rightarrow \{0, 1, \ldots, k - 1\}, \ 2 \leq k \leq |E(G)|$, which induces a vertex labeling $\varphi^* : V(G) \rightarrow \{0, 1, \ldots, k - 1\}$ in such a way that for each vertex v, assigns the label $\varphi(e_1) \cdot \varphi(e_2) \cdot \ldots \cdot \varphi(e_n)$ (mod k), where e_1, e_2, \ldots, e_n are the edges incident to the vertex v. The labeling φ is called a k-total edge product cordial labeling of G if $|(e_\varphi(i) + v_\varphi(i)) - (e_\varphi(j) + v_\varphi(j))| \leq 1$ for every $i, j, \ 0 \leq i < j \leq k - 1$, where $e_\varphi(i)$ and $v_\varphi(i)$ is the number of edges and vertices with $\varphi(e) = i$ and $\varphi^*(v) = i$, respectively.

In the thesis, we estimate the bounds of the parameters $\text{Ehs}(G, H)$, $\text{vfhs}(G, H)$ and $\text{efhs}(G, H)$, and determine the precise values of these parameters for certain families of plane graphs to demonstrate that the obtained bounds are tight.

Also we examine the existence of 3-total edge product cordial labelings for rhombic grid graphs, for toroidal fullerenes and for Klein-bottle fullerenes.