Abstract In this work, Mn₂O₃ were synthesized by molten salt method and WO₃ via hydrothermal treatment. Metal oxide-polymer based composites were prepared by incorporating the natural biopolymer, chitosan that is environment friendly and biodegradable. Direct blending strategy was applied to make Mn₂O₃, WO₃ and chitosan hybrid composites. Drop casting method was utilized for facile fabrication of composite films on FTO glass substrate. FTIR analysis exhibited the functional groups of chitosan in hybrid composite films. XRD and Raman analysis described structural properties pristine Mn₂O₃ and WO₃, (Mn₂O₃- chitosan), (WO₃-chitosan) and (Mn₂O₃-WO₃-chitosan) confirmed the formation of cubic crystalline Mn₂O₃ and hexagonal WO₃. Thermal stability of Mn₂O₃ -WO₃ -chitosan composite was investigated by Thermogravimetric Analysis/Differential Scanning Calorimetry (TGA/DSC) that depicted two stages of degradation, first one attributed to the removal of surface water and second to the decomposition of amine units. Scanning Electron Microscope images revealed the compact granular surface morphology of (Mn₂O₃ -WO₃ -chitosan) composite depicting stronger interaction of metal oxides and chitosan. Optical studies demonstrated that band gap of, (Mn₂O₃- chitosan), (WO₃-chitosan) and (Mn₂O₃-WO₃-chitosan) composite films were 2.13 eV, 2.43 eV, and 2.48 eV respectively and their photodegradation studies.