Abstract Terbium is the most intriguing element for theragnostic application in future. The intensity of the 152 Tb positron emissions ($T_{1/2}$, 17.5 h) is 17%, and their average energy is 1.080 MeV. The radionuclide might be beneficial for patient-specific PET dosimetry before the use of therapeutic radiolanthanides. The main reason that 152 Tb is of interest is because of its positron radiation, which enables the use of it as a diagnostic pair for 177 Lu and a therapeutic terbium isotope. In this study, experimental data for excitation functions and cross sections will be analysed for the radionuclide 152 Tb produced in proton-induced reactions of 152 Gd(p, n) 152 Tb, 155 Gd(p,4n) 152 Tb, and 159 Tb(p,8n) 152 Tb, as well as alpha-induced reactions of 151 Eu(α ,3n) 152 Tb up to 100MeV. The theoretical predictions from TALYS 2017, 2019, and 2020 are compared to the experimental excitation functions as well as to prior experimental data.