Abstract

Necessary and sufficient conditions governing one and two weight inequalities for one-sided strong fractional maximal operators, one-sided and Riesz potentials with product kernels are established on the cone of non-increasing functions. From the two-weight results it follows criteria for the trace inequality \(L^p_{\text{dec}}(\mathbb{R}^n_+) \to L^q(v, \mathbb{R}^n_+) \) boundedness) for these operators, where \(v \), in general, is not product of one-dimensional weights. Various type of two-weight necessary and sufficient conditions for the discrete Riemann–Liouville transform with product kernels are also established. The most of the derived two-weight results (continuous and discrete) are new even for potentials with single kernels.