Abstract

A plane graph is a particular drawing of a planar graph on the Euclidean plane. Let \(G(V, E, F) \) be a plane graph with vertex set \(V \), edge set \(E \) and face set \(F \). A proper entire \(t \)-colouring of a plane graph is a mapping:

\[
\alpha : V(G) \cup E(G) \cup F(G) \rightarrow \{1, 2, \ldots, t\}
\]
such that any two adjacent or incident elements in the set \(V(G) \cup E(G) \cup F(G) \) receive distinct colours. The entire chromatic number, denoted by \(\chi_{vef}(G) \), of a plane graph \(G \) is the smallest integer \(t \) such that \(G \) has a proper entire \(t \)-colouring.

The proper entire \(t \)-colouring of a plane graph have been studied extensively in the literature.

There are several modification on entire \(t \)-colouring. We focus on a face irregular entire \(k \)-labeling of a 2-connected plane graph as a labeling of vertices, edges and faces of \(G \) with labels from the set \(\{1, 2, \ldots, k\} \) in such a way that for any two different faces their weights are distinct. The weight of a face under a \(k \)-labeling is the sum of labels carried by that face and all the edges and vertices incident with the face. The minimum \(k \) for which a plane graph \(G \) has a face irregular entire \(k \)-labeling is called the entire face irregularity strength.

Another variation to entire \(t \)-colouring is a \(d \)- antimagic labeling as entire labeling of a plane graph with the property that for every positive integer \(s \), the weights of \(s \)-sided faces form an arithmetic sequence with a common difference \(d \).

In the thesis, we estimate the bounds of the entire face irregularity strength for disjoint union of multiple copies of a plane graph and prove the sharpness of the lower bound in two cases. Also we study the existence of \(d \)- antimagic labelings for
the Klein-bottle fullerene that is for a finite trivalent graph embedded on the Klein-
bottle with each face is a hexagon. In last chapter we investigate the 3-total edge
product cordial labeling of hexagonal grid (honeycomb) that is the planar graph with
m rows and n columns of hexagons.