ABSTRACT

Efficient numerical techniques are developed for the solution of the diffusion equation: $u_t = u_{xx}$, 0 < x < X, $0 < t \le T$, subject to u(x,0) = f(x), 0 < x < X, $u_x(X,t) = g(t)$, $0 < t \le T$ and subject to the specification of mass $\int_0^b u(x,t) dx = M(t)$, $0 < t \le T$, 0 < b < X by using second-order as well as third-order approximations and $u_t = u_{xx} + s(x,t)$, 0 < x < X, $0 < t \le T$, subject to u(x,0) = f(x), 0 < x < X, u(X,t) = g(t), $0 < t \le T$, and subject to the specification of energy $\int_0^b u(x,t) dx = M(t)$, $0 < t \le T$, $0 < t \le T$ by using third-order as well as fourth-order approximations and the results are compared with the the results of the schemes already present in the literature.