Abstract

In Chapter 1 we are concerned with the binomial edge ideal of a complete graph
and the line graph. In the first section we get the properties of the binomial edge
ideal of a complete graph: (X} is a prime ideal, in other words it is a toric ideal,
L(X) is Cohen-Macaulay of dim S/L(X) = n+ 1, and the generators of [o(X)
form a Grébner basis for any monomial order. We also showed that in. f(X) and,
consequently, there Io(X) have a linear resolution there < denotes the lexicograpic
order on S induced by the natural ordering of the vertices. For the line graph G, we
showed that generators of Ji; form a Grobner basis with respect to the lexicograpic
order. We determine the Betti numbers of S/Jg, depth(S/Js), the regularity, the
Hilbert series etc. In the third part we present a combinatorial characterization of
closed graphs given in [3] which will be useful to characterize the closed graph whose
binomial edge ideal is Cohen-Macaulay.

In Chapter 2 we review the primary decomposition of binomial edge ideals from
[7]. Next, we give some examples. Tt follows that the cycle C, is not unmixed for
n > 4. We also determine the minimal primes of line graph.

In Chapter 3 we review on of the main results of [3], namely, we present the
characterization of Cohen-Macaulay binomial edge ideals of closed graphs and we
present, the proof of the following statement: if J; is Cohen-Macaunlay, then 3;;(Jc)
= By, (in(Jg)) for all 4, 5. ‘

The last two chapters of my thesis consists of two ;innexes, namely Annex A
and Annex B. In Annex A we displayed, for all graphs with 5 vertices, the following
invariants : dim(S/Jg), depth(S/Je), the minimal primés and we discussed Cohen-
Macaulayness and unmixedness. All the caleulations {nrere done with Singular.
In Annex B we presented the basic facts about minimal graded free resolution,
numerical data arising from minimal graded free resoluf,ions, the Koszul complex,

the Koszul complex and depth, and ideals with linear quotients.
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